If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41y^2-15y=0
a = 41; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·41·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*41}=\frac{0}{82} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*41}=\frac{30}{82} =15/41 $
| g(5)= | | 12-7x-10=x+8x+2 | | 2(x+9)+x+66=180 | | 14-3x-1=7+12x+2 | | x²-14x-32=0 | | 6x=3x=81 | | 7x+8=8x+9 | | 3p+8=(p+8)-3p | | 14x-(7x)=56 | | 9x-28+8x-7=180 | | -6x+7=7x-6 | | 3(1.2b+2.1)=22 | | -(x-1)-0.2=3.5 | | 5x-12=-12+5(x-2) | | 8x–4=4x+8 | | 3(1.2b+2.1)=22 | | (8x-7)+(9x-28)=180 | | -6x+7=-6+7 | | 37=3v+15 | | 5x+25x-6=6(5x+1) | | x/15-17=1 | | -6x+7=-6-7 | | 48=4r+24-8r | | 12c+30=2(c-5) | | x=x-56 | | 13−3q=4 | | -21=3(u-3)-5u | | 3(c+7)=-12 | | t−-5-4=-4 | | (3x-5)=(2x-25) | | x+x/3=360 | | 3x+12=3x+5 |